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Abstract. We present a simulation of the motion of electrons in a mesoscopic Hall bar, scattered
by a local inhomogeneous magnetic field. In the low-field regime, the Hall resistance is found
to be determined precisely by the average magnetic field in the cross junction, which implies a
valuable device application of non-invasive access for measuring magnetic flux, like SQUIDs do,
but on a rather small (submicron) scale. The bending resistance is found to depend sensitively
on the local magnetic field profile, which may also imply certain device applications, such as
detecting the local magnetic properties of small objects. We also discuss briefly the asymmetric
effect due to non-identical leads and asymmetric location of the field profile in the cross junction.

1. Introduction

The Hall effect has been a very successful technique for obtaining information on the
properties of charge carriers, e.g. the sign of the charge carriers and their density. With the
improvement of the quality of the two-dimensional electron gas (2DEG), the well known
phenomena of the integer quantum Hall effect (IQHE) and the fractional quantum Hall effect
(FQHE) have been discovered [1], which has stimulated the progress of low-dimensional
physics greatly. In recent years, with the further development of the MBE and micro-
fabrication techniques, the quasi-one-dimensional (Q1D) semiconductor system has been
realized. The study of the Hall effect in the Q1D system has shown a lot of interesting
transport phenomena such as the quenching of the Hall resistance at low magnetic fields,
the last Hall plateau, and other anomalies [2–6]. Extensive theoretical efforts have also
contributed to the understanding of these novel phenomena [7–9].

Usually the Hall system is studied under a uniform magnetic field. However, the
Hall problem in the presence of an inhomogeneous magnetic field has become important
recently for the composite fermion theory in the FQHE [10], since for a density-modulated
2DEG, which is in the FQHE regime, the problem can be mapped onto the modulation of
the magnetic field. Moreover, due to the experimental progress, various inhomogeneous
magnetic fields can now be generated on a nanometre scale. For example, by using MBE
growth, semiconductor materials (e.g. GaAs) can be doped with magnetic ions (e.g. Mn).
Under specific growth conditions these ions conglomerate and form ferromagnetic clusters
(e.g. MnAs) with controllable diameters in the range of 5–30 nm [11]. If such a magnetic
particle is placed in the cross of a Hall bar, the Hall response signal can provide us with
magnetic information on the particle. This is a novel technique, which provides non-invasive
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access to the magnetic properties of very small (submicron) objects of any desired form,
size and material [12]. In this context, the mesoscopic Hall probes work effectively as
micro-fluxmeters, similar to SQUIDs, but with an effective detection loop of only about a
square micron.

In this work, we present a theoretical investigation of the magnetic response of a Hall
bar device to an individual submicron magnetic sample placed in the cross junction. We
noticed that in the regime of high and uniform magnetic field, the ballistic transport in a Hall
bar is dominated by the quantized edge states, which lead to quantized Hall conductance.
However, in the low-magnetic-field regime a classical approach developed by Beenakker
and van Houten in reference [9] worked very well as regards providing an understanding of
the anomalies in a Hall bar, and was in good agreement with the quantum lattice Green’s
function method [8]. Therefore, in the present work we will apply this classical approach,
since our main interest is in the low-magnetic-field regime. Furthermore, for considering
inhomogeneity of a magnetic field, which implies the absence of well defined edge states,
this classical approach appears to be quite appropriate. In our model simulation, we will
also assume sharp corners and hard-wall geometry for the system. The former assumption
will not influence our conclusions qualitatively; see reference [12], where slightly rounded
corners were considered. The Hard-wall assumption, which has been used widely even
in quantum calculations, is expected to be a better approximation in the present classical
computation, since a finite-height barrier is the same as a hard wall to a classical particle,
provided that the barrier is higher than the particle’s kinetic energy.

Figure 1. The four-terminal Hall bar, where an inhomogeneous magnetic field is present, which
is circularly symmetric and is placed at the centre of the cross junction.

2. The model and formalism

The four-terminal geometry for the Hall measurement is shown schematically in figure 1,
where the four leads are connected to reservoirs each at chemical potentialµi . Here we
show the system with four identical leads and a circular magnetic field profile situated in
the middle of the cross junction. In most of the present paper we will focus our discussion
on this geometry; however, the effect of non-identical leads and asymmetric location of
the magnetic field profile will also be discussed briefly. Three types of circular magnetic
field profile are considered. First, we consider a superconducting disc placed in an external
constant magnetic field above the centre of the junction. Because of the Meissner effect,
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we model the field profile as zero inside a region of radiusd, and constant outside it. The
scattering on this profile and the consequent physical results will be studied in considerable
detail. Another two magnetic field profiles will also be discussed briefly: one is that of a
single magnetic dipole which is placed a distancez0 above the cross junction in the absence
of an external magnetic field; another is a magnetic flux in the centre of the cross region
which we model by a Gaussian magnetic field profile.

The Hall resistance is calculated numerically using the semi-classical formalism. The
current in leadi is denoted byIi , which can be expressed according to the Landauer–Büttiker
formula as [13]

Ii = 2e

h

[
(Ni − Ri)µi −

∑
j 6=i

Tijµj

]
(1)

whereTij is the probability of transmission for an electron from leadj to lead i, andRi
the probability of reflection back into the same leadi. In practice, these probabilities are
calculated at the Fermi energyεF , and satisfy

∑
j 6=i Tij+Ri = Ni , according to the condition

for the current conservation, whereNi is the number of propagating modes in leadi. For
the four-lead Hall geometry with identical leads, the Hall resistanceRH can be found from
equation (1) by settingI1 = −I3 = I andI2 = I4 = 0:

RH = (µ2− µ4)/e

I
= h

2e2

T 2
21− T 2

41

Z
(2)

and the bending resistanceRB by settingI1 = −I2 = I andI3 = I4 = 0:

RB = (µ4− µ3)/e

I
= h

2e2

T 2
31− T41T21

Z
(3)

whereZ = [T 2
21+ T 2

41+ 2T31(T31+ T21+ T41)](T21+ T41). For the asymmetric Hall system
with either non-identical leads or an asymmetric magnetic field in the cross junction, the
simple formulae (2) and (3) break down. In this case, the Hall resistance and bending
resistance should be solved from equation (1) by setting the same boundary conditions for
the currents as in deriving equations (2) and (3).

To obtain the probabilitiesTij andRi , we follow the semi-classical approach developed
by Beenakker and van Houten in reference [9]. In our numerical simulation, we inject a
large number of electrons (Ne > 105) towards the junction through lead 1, and follow their
classical trajectories to determine the probabilities:Tj1 = Nj/Ne, whereNj is the number of
electrons collected in leadj . Note that for the case of non-identical leads or an asymmetric
magnetic field profile, similar procedures should be followed for each of the four leads. The
electrons are injected uniformly over lead 1, with the Fermi velocityvF =

√
2mεF , and an

angular distributionP(θ) = 1
2 cosθ , whereθ ∈ (−π/2, π/2) is the injecting angle with

respect to the channel axis. Here the angular distribution weight functionP(θ) ∼ cosθ
simply results from the slight shift of the Fermi surface of the reservoirs in the linear
response regime. The factor 1/2 is from the normalization condition.

3. Results and discussion

In the following we express the magnetic field in units ofB0 = mvF/2eW , and the resistance
in R0 = (h/2e2)π/2kFW , whereW is the half-width of the lead,m the mass of the electron,
kF =

√
2mεF/h̄2 the Fermi wave vector, andvF = h̄kF /m the Fermi velocity. For electrons

moving in GaAs (m = 0.067me) and for a typical channel width of 2W = 1 µm and a
Fermi energy ofεF = 10 meV, we obtainB0 = 0.087 T andR0 = 0.308 k�.
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Figure 2. (a), (b) Hall and bending resistances in the presence of a superconducting disc in
the cross junction, where the results for different sizes of the disc are shown. (c) The linear
behaviour of the Hall resistance in the low-magnetic-field regime. (d) The Hall coefficient
α = RH/B (solid curve) andα∗ = RH/〈B〉 (dashed curve) as functions of the disc radius,
where〈B〉 is the average magnetic field in the cross junction.

First, in figure 2 we present the results from the superconducting disc above the
symmetric junction. In figure 2(a) we show the Hall resistance as a function of the external
applied magnetic field for different sizes of the disc. Notice that there exists a critical
magnetic fieldBc, such that whenB > Bc the Hall resistance in the presence of the disc
coincides with that for the case of a homogeneous magnetic field (i.e.d = 0). WhenB < Bc
the Hall resistance is influenced by the presence of the disc. This critical magnetic fieldBc
is determined by the condition that at this value the diameter of the cyclotron orbit equals
the distance between the edge of the dot and the corner of the cross junction. Therefore,
for B > Bc, the motion of an electron is described by the skipping orbits which are located
along the edge of the device, and do not sense theB = 0 region in the cross junction,
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and consequently give rise to a Hall resistance exactly the same as the classical 2D value
RH = 2B/π , which is also in the reduced units ofR0 andB0, for both the presence and
the absence of a superconducting disc above the Hall bar system. ForB < Bc, the electron
orbits are not strongly bent, so they move through theB = 0 region in the junction. This
results in the following behaviour of the Hall resistance: there is a shoulder for a small dot,
and it changes eventually to a rounded peak with increasing size of the dot. This feature
can be understood as follows: with increasing magnetic field, the difference between the
transmission probabilitiesT21 andT41 increases first, and then decreases when the magnetic
field is larger than a certain critical value. On the other hand, the quantityZ in equation
(2) is a monotonically decreasing function of magnetic field. Thus, a shoulder or rounded
peak as in figure 2(a) occurs at around the maximum point ofT21− T41. This is also the
reason for the non-linear behaviour in the intermediate region between the low and high
magnetic fields in the absence of the superconducting dot (see the solid line in figure 2(a)),
which connects the two linear regimes with different slopes.

In figure 2(b) the bending resistance is shown. The non-zero value of the bending
resistance is a quite interesting feature of a mesoscopic Hall bar system, since for a
macroscopic ohmic structure, two leads attached to the same point on the current path
measure nearly the same voltage, soRB ∼ 0. From figure 2(b), for the case ofd = 0,
we find a non-zero bending resistance in the low-magnetic-field regime. With increasing
magnetic field,RB decreases, and becomes zero afterB > 2B0, which is in the classical 2D
regime, where, in addition to the classical 2D Hall resistance, this zero bending resistance
is expected. Therefore, here the zero bending resistance and the classical 2D Hall resistance
reflect in an interesting way the fact that the magnetic field changes the system from the
mesoscopic to the macroscopic regime. In the presence of a superconducting dot, we
find that the behaviour of the bending resistance is quite different from thed = 0 case.
In the low-magnetic-field limit, in addition to the geometry scattering, the scattering on
the superconducting dot destroys the guiding of the magnetic field, and thus the bending
resistance increases with increasing magnetic field. However, after the magnetic field
has gone beyond certain critical value, which is proportional to the size of the dot, the
guiding dominates the motion of electrons, and the bending resistance decreases with the
magnetic field. We notice that, for a large size of the dot, the bending resistance exhibits
further oscillation with increasing magnetic field. The region of increasingRB corresponds
to the region of decreasingRH , and vice versa. This feature is intuitively reasonable,
since the stronger bending of the field towards the direction of motion of the electrons
results in a larger Hall voltage, but a smaller bending voltage due to the better guiding
of the motion along the current path. We also observe a sign reversal inRB , which is
due to the incomplete guiding, at fields whereRH is rapidly rising. Here, the main but
somewhat complex structures of the bending resistance in figure 2(b) correspond exactly
to the relatively smooth behaviours of the Hall resistance in figure 2(a), both of which are
computed from the same data forTij by using equations (2) and (3), and can be understood
quite physically. However, we are not very sure of the origin of the small structures in the
bending resistance, which may result from the numerical accuracy limitation, although the
accuracy has been examined carefully by changing the numbers and initial positions and
directions of the injected particles for the Hall resistance in figure 2(a), and may not be so
high for the bending resistance, due to its more sensitive dependence on the magnetic field
profile in the cross junction. In this context, we point out that the bending resistance may
be an important quantity in mesoscopic Hall measurement, because of its high sensitivity
to the local magnetic field in the cross junction, which may lead to some useful techniques
for detecting a local magnetization in the cross.
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Note that, even in the presence of the disc, the behaviour of the Hall resistance for
low magnetic fields is linear—see figure 2(c), where the slope decreases with the disc size,
i.e. with the amount of the expelled magnetic flux. In this context, it is helpful for us to
analyse the Hall coefficientα = RH/B. In figure 2(d), we show that the Hall coefficient
decreases with increasing radius of the disc (see the solid curve), because of the reduction
of the average magnetic field in the cross junction. Furthermore, if we use the average field
〈B〉 in the cross junction,〈B〉 = [1 − π(d/2W)2]B, to define an effective Hall coefficient
asα∗ = RH/〈B〉, we find thatα∗ is independent ofd for d/W < 1.0, which is shown by
the dashed curve in figure 2(d). Ford > W , where only in the small regions near the four
corners is the magnetic field non-zero, our simulation gives a decreasing behaviour forα∗

with the further increase ofd. This breakdown is due to the ineffective scattering of the
extremely corner-locatedmagnetic field of the electrons. However, the remarkable result of
constantα∗ in figure 2(d) indicates that in low-magnetic-field regime the Hall resistance is
determined completely by the average field in the cross region, and is independent of the
detailed distribution of the field. This is one of our major conclusions in this work, which
will be confirmed further in the following by investigating other inhomogeneous magnetic
field profiles.

Figure 3. The Hall resistance from (a) a magnetic dipole, and (b) a magnetic vortex in the
absence of an external magnetic field, where the small circles are obtained fromRH = 〈B〉/2.

With this aim, we consider the scattering by another two types of magnetic field profile,
namely a magnetic dipole and magnetic flux, in the absence of other external magnetic
fields. First, for the magnetic dipole, the component of the magnetic field perpendicular to
the 2D plane is given byB(ρ) = M(3 cos2 θ − 1)/R3, whereR2 = ρ2+ z2

0 = x2+ y2+ z2
0,

cos2 θ = z2
0/R

2, z0 is the distance between the dipole and the 2D plane, andM is the dipole
moment. In figure 3(a) we show the scaled Hall resistanceRH/M as a function of the
distancez0. The results forM = 1, 0.5, and 0.1 are given by the solid, dashed, and chain
curves respectively. We see that for largez0, the Hall resistanceRH scales perfectly with
M. This feature proves that the Hall resistance is proportional to the average magnetic field
over the junction region in low-field limit. In figure 3(a) we also present the result obtained
fromRH = 〈B〉/2, shown by the small circles, where we see clearly that this simple formula
can give exactly the same result as is obtained from the numerical simulation. However,
with decreasingz0, the Hall resistance deviates from the above simple formula, because of
the more strongly non-uniform magnetic field. For smallz0, B(ρ) has a sharp positive core
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at the centre which is not sensed by the electrons; consequently a negative Hall resistance
appears in this regime.

Next, for the magnetic flux, we model it by a Gaussian magnetic field profileB(ρ) =
b0 exp(−ρ2/ρ2

0), whereρ =
√
x2+ y2, ρ0 describes the spread of the magnetic field, andb0

describes the strength of the field. In figure 3(b) we show the Hall resistance as a function
of the widthρ0 of the magnetic field profile, for several values of the strength. The solid
lines are for the results from the numerical simulation, and the small circles are for those
obtained from the formulaRH = 〈B〉/2. Here we illustrate again that in low-magnetic-field
regime the Hall resistance is determined precisely by the average magnetic field in the cross
junction, and is independent of the detailed distribution of the field.

Figure 4. The Hall resistance (a) and bending resistance (b) for an asymmetric Hall bar. The
width ratio of two pairs of leads is denoted byγ = W1/W (see the text for a more detailed
description).

The above discussions are restricted to the symmetric systems. To show the asymmetric
effects on the Hall and bending resistances, let us consider the asymmetric system with
non-identical leads, for the specific case of a homogeneous magnetic field. To be definite,
we denote the ratio of the widths of lead 2 (4) and lead 1 (3) (see figure 1) byγ = W1/W .
The results are shown in figures 4(a) and 4(b) forγ = 0.5 (dotted curve), 1.0 (solid curve),
and 1.5 (dashed curve).

(1) In the high-magnetic-field regime, the Hall resistances overlap with each other
precisely, and have the classical 2D value. Meanwhile, the bending resistance is zero. This
is simply the classical 2D regime.

(2) There exists an intermediate regime for each case, where both the Hall resistance
and the bending resistance depend on the geometry—namely, the ratioγ . For the case of
W1 < W , the critical fieldBc for the transition to the classical 2D system is larger than that
for W1 = W . ForW1 > W , the result is the opposite.

(3) In the low-magnetic-field regime, the Hall resistances again become the same for
different values ofγ , while the bending resistances are quite different from each other.

The bending resistance, including its behaviour in the intermediate regime, can be
understood as follows. Since the current flows from lead 1 to lead 2, the voltage measured
between lead 3 and lead 4 would decrease with increasing widthW1, because the geometry
scattering is weaker for the current flowing into a wider lead than in the opposite case.
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Another type of asymmetry is the asymmetric location of the circular magnetic field
profile in the cross junction. In the low-magnetic-field regime, we found that the Hall
resistance is still determined exactly by the average magnetic field in the cross junction,
but the bending resistance depends on the location of the field profile sensitively. In the
intermediate regime, both the Hall and bending resistances are influenced by the location
of the magnetic field profile. In the high-field regime, in particular for the system with
a superconducting disc studied above, a pure 2D classical feature is approached after the
magnetic field goes beyond a certain value, which depends on the size and location of the
disc.

4. Conclusions

In summary, we have applied a semi-classical approach to simulate the motion of electrons
in a mesoscopic Hall bar, in the presence of an inhomogeneous magnetic field resulting
from (1) a superconducting dot, (2) a magnetic dipole, and (3) a magnetic vortex. We
found that in the low-magnetic-field regime the Hall resistance is determined completely by
the average magnetic field in the cross junction of the Hall bar and is independent of the
shape of the field profile. This finding may imply a novel technique which provides non-
invasive access to magnetic properties over a very small scale—namely, systems working
effectively as micro-fluxmeters similar to SQUIDs, but with an effective detection loop of
only about a square micron. For the bending resistance, we showed its sensitive dependence
on the magnetic field profile in the cross junction, which may in practice be helpful for
detecting the inhomogeneity of the magnetic field effectively. However, because of its
complicated manner of dependence on the field profile, further work to determine their
relation is required, for various types of inhomogeneous magnetic field profile. We also
discussed briefly the asymmetric effect on the Hall and bending resistances, due to the
device geometry and asymmetric location of the circular inhomogeneous magnetic field
profile. Finally, we mention that the present approach is essentially a classical method,
which worked very well in the low-magnetic-field regime [8, 9]. Consequently, our results
in the high-magnetic-field regime should be understood on the classical level, where we
found a transition to classical 2D behaviour when the magnetic field goes beyond certain
critical value.

References

[1] For a recent review see, e.g.,
Chakraborty T and Pietilänen P (ed) 1995The Quantum Hall Effects(Berlin: Springer)

[2] Roukes M L, Scherer A, Allen S J, Craighead H G, Ruthen R M, Beebe E D and Harbison J P 1987Phys.
Rev. Lett.59 3011

[3] Ford C J B,Thornton T J, Newbury R, Pepper M, Ahmed H, Peacock D C, Ritchie D A, Frost J E F and
Jones G A C 1988Phys. Rev.B 38 8518

[4] Timp G, Chang A M, Mankiewich P M, Behringer R, Cunningham J E, Chang T Y and Howard R E 1987
Phys. Rev. Lett.59 732

Timp G, Baranger H U, deVegvar P, Cunningham J E, Howard R E, Behringer R and Mankiewich P M 1988
Phys. Rev. Lett.60 2081

[5] Simons J A, Tsui D C and Weimann G 1988Surf. Sci.196 81
[6] Chang A M, Chang T Y and Baranger H U 1989Phys. Rev. Lett.63 996
[7] Peeters F M 1988Phys. Rev. Lett.61 589

Kirczenow G 1989Phys. Rev. Lett.62 2993
Akera H and Ando T 1989Phys. Rev.B 39 5508

[8] Baranger H U and Stone A D 1989Phys. Rev. Lett.63 414



The Hall effect of an inhomogeneous magnetic field 8073

Baranger H U, DiVincenzo D P, Jalabert R A and Stone A D 1991Phys. Rev.B 44 10 637
[9] Beenakker C W J and vanHouten H 1989Phys. Rev. Lett.63 1857

[10] Halperin B I, Lee P A and Read N 1993Phys. Rev.B 47 7312
Kim Y B, Furusaki A, Wen X G and Lee P A 1994Phys. Rev.B 50 17 917
Kim Y B, Lee P A, Wen X G and Stamp P C E1995Phys. Rev.B 51 10 779
Jain J K 1989Phys. Rev. Lett.63 199

[11] De Boeck J, Oesterholt R, Van Esch A, Bender H, Bruynseraede C, Van Hoof C and Borghs G 1996Appl.
Phys. Lett.68 2744

[12] Geim A K, Dubonov S V, Grigorieva I V, Lok J G S,Maan J C, Li X Q, Peeters F M and Nazarov Yu V
1997Superlatt. Microstruct.at press
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